Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3819-3825, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488397

RESUMO

Photosynthesis of H2O2 from seawater represents a promising pathway to acquire H2O2, but it is still restricted by the lack of a highly active photocatalyst. In this work, we propose a convenient strategy of regulating the number of benzene rings to boost the catalytic activity of materials. This is demonstrated by ECUT-COF-31 with adding two benzene rings as the connector, which can result in 1.7-fold enhancement in the H2O2 production rate relative to ECUT-COF-30 with just one benzene ring as the connector. The reason for enhancement is mainly due to the release of *OOH from the surface of catalyst and the final formation of H2O2 being easier in ECUT-COF-31 than in ECUT-COF-30. Moreover, ECUT-COF-31 provides a stable photogeneration of H2O2 for 70 h, and a theoretically remarkable H2O2 production of 58.7 mmol per day from seawater using one gram of photocatalyst, while the cost of the used raw material is as low as 0.24 $/g.

2.
Nat Commun ; 15(1): 453, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212316

RESUMO

With the rapid development of nuclear energy, problems with uranium supply chain and nuclear waste accumulation have motivated researchers to improve uranium separation methods. Here we show a paradigm for such goal based on the in-situ formation of π-f conjugated two-dimensional uranium-organic framework. After screening five π-conjugated organic ligands, we find that 1,3,5-triformylphloroglucinol would be the best one to construct uranium-organic framework, thus resulting in 100% uranium removal from both high and low concentration with the residual concentration far below the WHO drinking water standard (15 ppb), and 97% uranium capture from natural seawater (3.3 ppb) with a record uptake efficiency of 0.64 mg·g-1·d-1. We also find that 1,3,5-triformylphloroglucinol can overcome the ion-interference issue such as the presence of massive interference ions or a 21-ions mixed solution. Our finds confirm the superiority of our separation approach over established ones, and will provide a fundamental molecule design for separation upon metal-organic framework chemistry.

3.
Inorg Chem ; 60(11): 8211-8217, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018393

RESUMO

Encapsulating a certain guest molecule in an assigned molecular compartment and then endowing the corresponding potential remains a huge challenge for metal-organic frameworks. To this end, we demonstrate a good example, for the first time, based on an actinide-based MOF. The used MOF (namely, ECUT-300) shows a unique uranyl-TPE anionic skeleton with three distinct cages, viz., mesopore A (2.8 nm), mesopore B (2.0 nm), and micropore C (0.9 nm). Through solid-liquid reaction, a RhB+ molecule can be encapsulated into ECUT-300 with the exact location in mesopore B, whereas the encapsulation of a metal-organic cation of [Fe(tpy)2]3+ was observed with the location in micropore C, suggesting unprecedented classified encapsulation. Impressively, the potential of the resulting guest@MOF composites is also highly dependent on the type of encapsulated guest molecules, for example, white-light emission for RhB+ and selective adsorption of C2H2 over CO2 for [Fe(tpy)2]3+.

4.
Inorg Chem ; 59(7): 4995-5003, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32163270

RESUMO

Because of the permission of the manipulations of modular construction on the atomic level, covalent organic frameworks (COFs) have attracted extensive attention in the electrocatalytic field. Owing to the lack of metal sites in pristine COFs constructed only by metal-free organic building units, it generally exhibits extremely low electrocatalytic activity. Thereby, linking metal sites on the backbone of pyrolysis-free COFs but not loading them on the surface to enhance the electrocatalytic activity is highly desirable but still remains a huge challenge. To this end, herein, we report an efficient and general cation-exchange strategy to synthesize Ni/Fe metal-ion-incorporated COFs (NixFe1-x@COF-SO3) for the oxygen evolution reaction (OER) based on the fundamental structure design of COFs. Impressively, the turnover frequency (TOF) value in Ni0.5Fe0.5@COF-SO3 reaches 0.14 s-1 at the overpotential of 300 mV, which outperforms most recently reported OER electrocatalysts, indicative of ultrahigh metal-atom utilization efficiency.

5.
Adv Sci (Weinh) ; 6(16): 1900547, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453066

RESUMO

An ideal porous adsorbent toward uranium with not only large adsorption capacity and high selectivity but also broad applicability even under rigorous conditions is highly desirable but still extremely scarce. In this work, a porous adsorbent, namely [NH4]+[COF-SO3 -], prepared by ammoniating a SO3H-decorated covalent organic framework (COF) enables remarkable performance for uranium extraction. Relative to the pristine SO3H-decorated COF (COF-SO3H) with uranium adsorption capacity of 360 mg g-1, the ammoniated counterpart of [NH4]+[COF-SO3 -] affords ultrahigh uranium uptake up to 851 mg g-1, creating a 2.4-fold enhancement. Such a value is the highest among all reported porous adsorbents for uranium. Most importantly, a large distribution coefficient, K d U, up to 9.8 × 106 mL g-1 is observed, implying extremely strong affinity toward uranium. Consequently, [NH4]+[COF-SO3 -] affords highly selective adsorption of uranium over a broad range of metal ions such as SU/Cs = 821, SU/Na = 277, and SU/Sr = 124, making it as effective uranium adsorbent from seawater, resulting in amazing uranium adsorption capacity of 17.8 mg g-1. Moreover, its excellent chemostability also make it an effective uranium adsorbent even under rigorous conditions (pH = 1, 8, and 3 m acidity).

6.
Dalton Trans ; 46(2): 338-341, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27957568

RESUMO

Reversible photo/thermoswitchable dual-color green-to-blue fluorescence is reported here, which is mainly due to a single-crystal-to-single-crystal (SCSC) transformation of the chromophore from a supramolecular aggregation to a covalently bonded polymer.

7.
Chem Commun (Camb) ; 53(4): 763-766, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27999838

RESUMO

The first MOF (metal-organic framework) built on both diarylethene and azobenzene photochromic units is reported here and displays distinct photoresponses for different guest molecules, thus creating an easy-to-use pathway to modulate the adsorption selectivity of MOF materials.

8.
Chem Commun (Camb) ; 52(61): 9538-41, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27380820

RESUMO

Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required.

9.
J Hazard Mater ; 311: 30-6, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26954473

RESUMO

Driven by an energy crisis but consequently puzzled by various environmental problems, uranium, as the basic material of nuclear energy, is now receiving extensive attentions. In contrast to numerous sorbents applied in this field, metal-organic framework (MOFs), as a renovated material platform, has only recently been developed. How to improve the adsorption capacity of MOF materials towards U(VI) ions, as well as taking advantage of the nature of these MOFs to design photo-switched behaviour for photo-triggered storage/release of U(VI) ions are at present urgent problems and great challenges to be solved. Herein, we show a simple and facile method to target the goal. Through coordination-based post-synthetic strategy, microporous- mesoporous Zn-MOF-74 was easily functionalized by grafting coumarin on coordinatively unsaturated Zn(II) centers, yielding a series of coumarin-modified Zn-MOF-74 materials. The obtained samples displayed ultra-high adsorption capacity for U(VI) ions from water at pH value of 4 with maximum adsorption capacities as high as 360 mg/g (the record value in MOFs) and a remarkable photo-switched capability of 50 mg/g at pH value of 4. To the best of knowledge, and in contrast to the well-known photo-switched behaviour towards CO2, dye (propidium iodide), as well as fluorescence observed in MOFs, this is the first study that shows a photo-switched behaviour towards radioactive U(VI) ions in aqueous solution.

10.
Inorg Chem ; 54(24): 11587-9, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26645386

RESUMO

Herein, we report a robust azo-metal-organic framework (MOF), namely, ECUT-15, which can be described as a 10-connected bct net built on trinuclear Co3 subunits. The activated samples of it perform a somewhat breathing behavior. Most importantly, under UV irradiation, this MOF performs outstanding photoswitching behavior toward CO2, giving great variation in the CO2 capture/release performance, for example, 45% under static conditions and 75% under dynamic measurements, as well as instantaneous release of up to 78%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...